banner



Shell Mechanical Engineering Tool Design

Special Issue "Mechanical Design Technologies for Beam, Plate and Shell Structures"

Share This Special Issue

Special Issue Editor

Prof. Dr. César M. A. Vasques
E-Mail Website
Guest Editor

Mechanical and Materials Engineering, School of Technology and Management, Instituto Politécnico de Viana do Castelo, 4900-348 Viana do Castelo, Portugal
Interests: dynamics; vibration and damping; smart materials and structures; computational and experimental mechanics; mechatronics and structural control; structural acoustics; structural health monitoring; impact and wave propagation; composite structures; machine design; power transformers design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will bring together theoretical studies or applied works on state-of-the-art computational modeling or experimental techniques used in the mechanical design of general structural engineering systems embodying beam, plate, and shell structural elements. Advances in fundamental theories, approximation methods, computational techniques, and experimental testing technologies, addressing modern trends and complicating effects, such as complex shapes, multi-layered structures, lattice designs, material anisotropy, structural damping treatments, smart structures, additive-manufactured parts, or complicated analysis, such as non-linear material and geometric behaviors, multi-scale approaches, dynamic analysis, and multi-physics design activities, are especially welcome.

Prof. Dr. César M. A. Vasques
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Mechanics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • beam
  • plate
  • shell
  • computational methods
  • experimental techniques
  • complicating effects
  • structural analysis
  • mechanical design

Published Papers (7 papers)

Research

Article

A Box-Girder Design Using Metaheuristic Algorithms and Mathematical Test Functions for Comparison

Viewed by 344

Abstract

In engineering, metaheuristic algorithms have been used to solve complex optimization problems. This paper investigates and compares various algorithms. On one hand, the study seeks to ascertain the advantages and disadvantages of the newly presented heuristic techniques. The efficiency of the algorithms is [...] Read more.

In engineering, metaheuristic algorithms have been used to solve complex optimization problems. This paper investigates and compares various algorithms. On one hand, the study seeks to ascertain the advantages and disadvantages of the newly presented heuristic techniques. The efficiency of the algorithms is highly dependent on the nature of the problem. The ability to change the complexity of the problem and the knowledge of global optimal locations are two advantages of using synthetic test functions for algorithm benchmarking. On the other hand, real-world design issues may frequently give more meaningful information into the effectiveness of optimization strategies. A new synthetic test function generator has been built to examine various optimization techniques. The objective function noisiness increased significantly with different transformations (Euclidean distance-based weighting, Gaussian weighting and Gabor-like weighting), while the positions of the optima remained the same. The test functions were created to assess and compare the performance of the algorithms in preparation for further development. The ideal proportions of the primary girder of an overhead crane have also been discovered. By evaluating the performance of fifteen metaheuristic algorithms, the optimum solution to thirteen mathematical optimization techniques, as well as the box-girder design, is identified. Some conclusions were drawn about the efficiency of the different optimization techniques at the test function and the transformed noisy functions. The overhead travelling crane girder design shows the real-life application. Full article

Show Figures

Article

Study on Establish a Brittle Fracture Prediction Considering Different Crack Opening Modes Using Mixed-Mode Ratio

Viewed by 362

Abstract

In this study, we propose a method for predicting the occurrence of brittle fractures in the beam-to-column joints of steel structures, considering different crack opening modes. We conducted experiments on beam-to-diaphragm joint specimens with varying plastically constrained cracks to reproduce brittle fractures. The [...] Read more.

In this study, we propose a method for predicting the occurrence of brittle fractures in the beam-to-column joints of steel structures, considering different crack opening modes. We conducted experiments on beam-to-diaphragm joint specimens with varying plastically constrained cracks to reproduce brittle fractures. The experiments' results demonstrated the effectiveness of the toughness scale model and the Weibull stress approach. In addition, we propose the mixed-mode ratio, which is a quantitative index of the mode difference, and we applied it to the finite element models of the specimens. In this study, we evaluate the validity of the mixed-mode ratio and explore the differences in crack opening modes, as they pertain to the occurrence of brittle fractures. Full article

Show Figures

Article

Steady-State Harmonic Vibrations of Viscoelastic Timoshenko Beams with Fractional Derivative Damping Models

Viewed by 382

Abstract

Due to growing demands on newly developed products concerning their weight, sound emission, etc., advanced materials are introduced in the product designs. The modeling of these materials is an important task, and a very promising approach to capture the viscoelastic behavior of a [...] Read more.

Due to growing demands on newly developed products concerning their weight, sound emission, etc., advanced materials are introduced in the product designs. The modeling of these materials is an important task, and a very promising approach to capture the viscoelastic behavior of a broad class of materials are fractional time derivative operators, since only a small number of parameters is required to fit measurement data. The fractional differential operator in the constitutive equations introduces additional challenges in the solution process of structural models, e.g., beams or plates. Therefore, a highly efficient computational method called Numerical Assembly Technique is proposed in this paper to tackle general beam vibration problems governed by the Timoshenko beam theory and the fractional Zener material model. A general framework is presented, which allows for the modeling of multi-span beams with general linear supports, rigid attachments, and arbitrarily distributed force and moment loading. The efficiency and accuracy of the method is shown in comparison to the Finite Element Method. Additionally, a validation with experimental results for beam systems made of steel and polyvinyl chloride is presented, to illustrate the advantages of the proposed method and the material model. Full article

Show Figures

Article

Paint Coating Removal by Heating for High-Strength Bolted Joints in Steel Bridge and Its Influence on Bolt Axial Force

Viewed by 479

Abstract

A series of experiments were carried out for developing a paint coating removal method for high-strength bolted joints in steel bridges. The paint-coated bolted joint specimens were heated to the target temperature of 200 °C by using a sheet-type ceramic heater. The maximum [...] Read more.

A series of experiments were carried out for developing a paint coating removal method for high-strength bolted joints in steel bridges. The paint-coated bolted joint specimens were heated to the target temperature of 200 °C by using a sheet-type ceramic heater. The maximum temperature of specimens could be controlled within 10% of the target value. The paint coating was easily removed by using general tools after heating. The behaviour of bolts with thermal expansion and shrinkage was monitored by strain gauges attached to the bolts during heating. It was estimated that the axial forces of the bolts were reduced by 2.6% of the initially installed axial forces, on average. Full article

Show Figures

Article

An Economical and Mechanical Investigation on Local Post-Weld Heat Treatment for Stiffened Steel Plates in Bridge Structures

Viewed by 406

Abstract

A heat treatment is effective for reducing the residual stress of the welded structures. A post-weld heat treatment (PWHT) requires a large heating apparatus (furnace). It requires a high energy, a long time, and a high cost. For examining the possibility of cost [...] Read more.

A heat treatment is effective for reducing the residual stress of the welded structures. A post-weld heat treatment (PWHT) requires a large heating apparatus (furnace). It requires a high energy, a long time, and a high cost. For examining the possibility of cost and energy saving in PWHT work, an economical and mechanical investigation of the local PWHT to stiffened plate members in steel bridges was conducted. The expense of apparatus for the furnace PWHT was 1.5 times higher than that of local PWHT by sheet-type ceramic heaters. When the number of heater units was reduced and were repeatedly used, the expense for the apparatus became lower. However, it took longer to complete the heat treatment than with the furnace PWHT or the local PWHT with full heater units. The thermal elastic-plastic finite element (FE) analysis examined the effect of local PWHT. The tendency of the stress distribution after the local PWHT differed from the welding residual stress or the stress after the furnace PWHT because of the temperature difference between the heated and the non-heated parts of the local PWHT. However, the effect of residual stress relief by the local PWHT could be almost the same as that of the furnace PWHT. Full article

Show Figures

Article

Modal Analysis of Optimized Trapezoidal Stiffened Plates under Lateral Pressure and Uniaxial Compression

Viewed by 344

Abstract

This paper deals with the modal analysis of optimized trapezoidal stiffened plates with simple supported conditions on the four edges of the base plate. The main objective of the finite element analysis is to investigate the natural frequencies and mode shapes of some [...] Read more.

This paper deals with the modal analysis of optimized trapezoidal stiffened plates with simple supported conditions on the four edges of the base plate. The main objective of the finite element analysis is to investigate the natural frequencies and mode shapes of some stiffened structures subjected to lateral pressure and uniaxial compression in order to identify any potentially dangerous frequencies and eliminate the failure possibilities. The natural frequencies and mode shapes are important parameters in the design of stiffened plates for dynamic loading conditions. In this study, the numerical analysis is performed for such a design of this kind of welded plates which have already been optimized for lateral pressure and uniaxial compression. The objective function of the optimization to be minimized performed with the Excel Solver program is the cost function which contains material and fabrication costs for Gas Metal Arc Welding (GMAW) welding technology. In this study, the eigenvalue extraction used to calculate the natural frequencies and mode shapes is based on the Lanczos iteration methods using the Abaqus software. The structure is made of two grades of steel, which are described with different yield stress while all other material properties of the steels in the isotropic elastic model remain the same. Drawing the conclusion from finite element analysis, this circumstance greatly affects the result. Full article

Show Figures

Article

On the Generation of Harmonics by the Non-Linear Buckling of an Elastic Beam

Viewed by 687

Abstract

The Euler–Bernoulli theory of beams is usually presented in two forms: (i) in the linear case of a small slope using Cartesian coordinates along and normal to the straight undeflected position; and (ii) in the non-linear case of a large slope using curvilinear [...] Read more.

The Euler–Bernoulli theory of beams is usually presented in two forms: (i) in the linear case of a small slope using Cartesian coordinates along and normal to the straight undeflected position; and (ii) in the non-linear case of a large slope using curvilinear coordinates along the deflected position, namely, the arc length and angle of inclination. The present paper starts with the exact equation in a third form, that is, (iii) using Cartesian coordinates along and normal to the undeflected position like (i), but allowing exactly the non-linear effects of a large slope like (ii). This third form of the equation of the elastica shows that the exact non-linear shape is a superposition of linear harmonics; thus, the non-linear effects of a large slope are equivalent to the generation of harmonics of a linear solution for a small slope. In conclusion, it is shown that: (i) the critical buckling load is the same in the linear and non-linear cases because it is determined by the fundamental mode; (ii) the buckled shape of the elastica is different in the linear and non-linear cases because non-linearity adds harmonics to the fundamental mode. The non-linear shape of the elastica, for cases when powers of the slope cannot be neglected, is illustrated for the first four buckling modes of cantilever, pinned, and clamped beams with different lengths and amplitudes. Full article

Show Figures

Shell Mechanical Engineering Tool Design

Source: https://www.mdpi.com/journal/applmech/special_issues/Beam_Plate_Shell_Structures

Posted by: harperwinfory49.blogspot.com

0 Response to "Shell Mechanical Engineering Tool Design"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel